Fractional Fourier Transform and Geometric Quantization
نویسنده
چکیده
Generalized Fourier transformation between the position and the momentum representation of a quantum state is constructed in a coordinate independent way. The only ingredient of this construction is the symplectic (canonical) geometry of the phase-space: no linear structure is necessary. It is shown that the “fractional Fourier transform” provides a simple example of this construction. As an application of this techniques we show that for any linear Hamiltonian system, its quantum dynamics can be obtained exactly as the lift of the corresponding classical dynamics by means of the above transformation. Moreover, it can be deduced from the free quantum evolution. This way new, unknown symmetries of the Schrödinger equation can be constructed. It is also argued that the above construction defines in a natural way a connection in the bundle of quantum states, with the base space describing all their possible representations. The non-flatness of this connection would be responsible for the non-existence of a quantum representation of the complete algebra of classical observables.
منابع مشابه
Implementation of Discrete Fractional Fourier Transform for Signal Compression
An efficient method for implementing closed form discrete fractional Fourier transform for the purpose of signal compression is presented. Implementation method is compared with that of existing closed form discrete fractional Fourier transform, with respect to computational complexity, variance of quantization error, signal to noise ratio and number of bits for the representation of coefficien...
متن کاملSliding discrete fractional transforms
Fractional transforms are useful tools for processing of non-stationary signals. The methods of implementing sliding discrete fractional Fourier transform (SDFRFT), sliding discrete fractional cosine transform (SDFRCT) and sliding discrete fractional sine transform (SDFRST) for real time processing of signals are presented. The performances of these sliding transforms, with regard to computatio...
متن کاملFractional Fourier Transform Based OFDMA for Doubly Dispersive Channels
The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...
متن کاملNew signal representation based on the fractional Fourier transform: definitions
The fractional Fourier transform is a mathematical operation that generalizes the well-known Fourier transform. This operation has been shown to have physical and optical fundamental meanings, and it has been experimentally implemented by relatively simple optical setups. Based on the fractional Fourier-transform operation, a new space-frequency chart definition is introduced. By the applicatio...
متن کاملGeometric Quantization, Parallel Transport and the Fourier Transform
In quantum mechanics, the momentum space and position space wave functions are related by the Fourier transform. We investigate how the Fourier transform arises in the context of geometric quantization. We consider a Hilbert space bundle H over the space J of compatible complex structures on a symplectic vector space. This bundle is equipped with a projectively flat connection. We show that par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012